

1GHz, 400-1000nm, powered by battery or DC supply

DATASHEET

w.agiltron.com

Features

- Low Signal Distortion
- High Bandwidth 1GHz
- Fiber Coupled
- Power Supplier Operation
- Battery Operation
- Fast Response

Applications

- General Lab Use
- Instruments

The HSDT series High-Speed Fiber-Coupled Detectors are engineered for high-fidelity response at bandwidths exceeding 1 GHz. Unlike amplified detectors, which can distort signals, especially at high frequencies due to their amplification circuitry, the HSDT operates with a low-noise DC bias, avoiding such distortions. This makes it ideal for measuring fast signal transients, providing a linear response to incident light. The HSDT operates in photoconductive mode, using reverse bias from either an internal battery or a DC power supply, where incoming light generates a current flow. A parallel resistor can be added to convert the detector current into a voltage, maximizing response. For optimal performance, particularly due to cabling effects, a 50-ohm resistor should be used at the oscilloscope input. We offer a BNC 50-ohm dummy resistor for this purpose. For measuring laser pulses longer than 500 ns, a parallel resistor between 1k and 10k ohms is recommended.

The h signal is output through an SMA connector, allowing easy monitoring with an oscilloscope or other measurement electronics. The unit includes a built-in battery with a twist switch for convenient operation, along with a connector for an external DC power supply. An optional wall-pluggable DC power supply is also available. The HSDT detectors are ideal for test and measurement applications, including research in data communications, analog microwaves, and high-speed photonics.

Specifications

Parameter	Min	Typical	Max	Unit
Detector Diameter		250		μm
Wavelength Response	400		1000	nm
Peak Response [1]		0.4		A/W
Capacitance		1.7		pF
Rise/Fall Time ^[2]		1		ns
Bandwidth ^[3]	DC		1	GHz
NEP ^[1]		9x10 ⁻¹⁵		W/Hz ^{1/2}
Dark Current		0.2		nA
Bias Voltage			12	V
Optical Damage Threshold	20			mW
Operating Temperature	0		50	°C
Optical Input		FC		
Electric Output (DC Coupled)		SMA		
Battery		A23, 12V, 40mAh	1	

Notes:

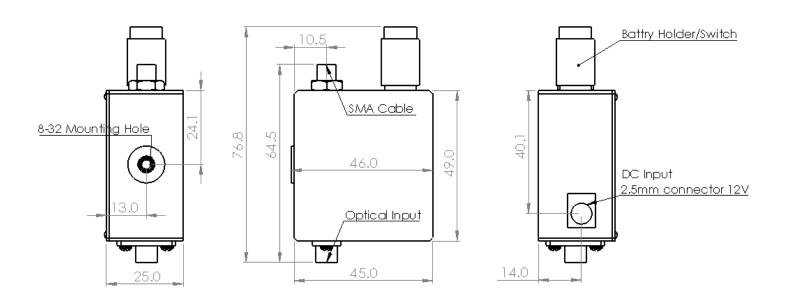
[1]. @730nm

[2]. 80/20%

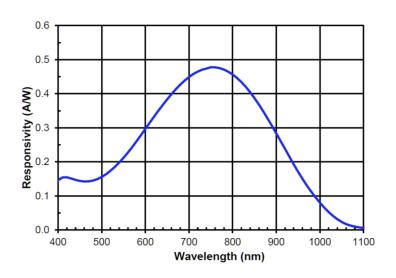
[3]. Defined as the boundary at which the output is 3dB below the normal output

Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

Rev	10/24/24	


© Photonwares Corporation	P +1 781-935-1200	sales@photonwares.com	<u>www</u>

1GHz, 400-1000nm, powered by battery or DC supply


DATASHEET

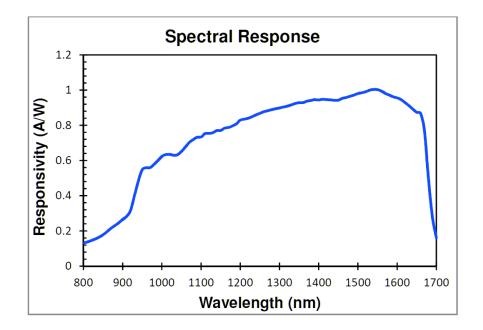
Mechanical Dimensions (mm)

Spectral Response (typical)

Pulse Response (typical)

© Photonwares Corporation

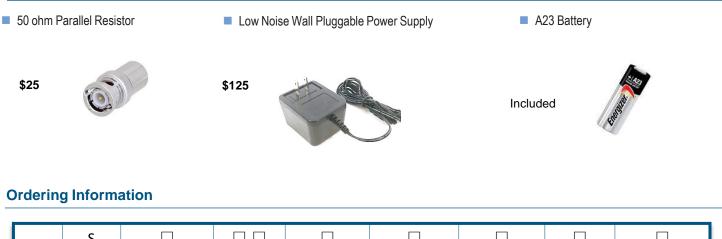
P +1 781-935-1200 E sales@photonwares.com


www.agiltron.com

1GHz, 400-1000nm, powered by battery or DC supply

DATASHEET

Spectral Response



1GHz, 400-1000nm, powered by battery or DC supply

DATASHEET

Frequency Response (typical)

Accessories

	2							
Prefix	Туре	Wavelength	Speed	Configure	Package	Grade*	50 ohm	Power Supply
HSDT-	Silicon = S	800-1700nm = 1 Special = 0	4GHz = A4	Regular = 1 Special = 0	Regular = 1 Special = 0	Regular = 1 Premium = 2	Non = 1 Yes = 2	Non = 1 Yes = 2

* Premium selects the sensitivity to exceed the listed value

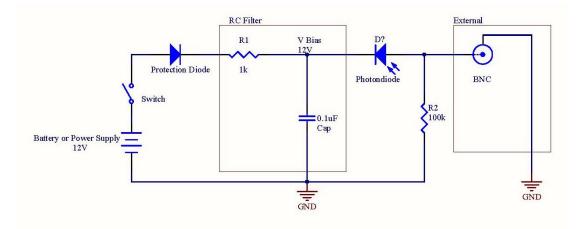
© Photonwares Corporation

P +1 781-935-1200 E sales@photonwares.com

www.agiltron.com

1GHz, 400-1000nm, powered by battery or DC supply

DATASHEET


Operation Manual

- Connect the detector to an oscilloscope with an appropriate parallel resistor at the oscilloscope connection.
- Rotate the battery holder to open and load the battery, then close it.
- Push the back of the battery holder in to switch on
- Couple the optical input into the detector using an FC/PC cable
- The measured optical profile should be displayed on the oscilloscope
- For long operations, connect the DC power supply and push out the switch at the back of the battery holder.

Operation Physics

The photodiode consists of a PN junction that generates a photocurrent when light with energy (wavelength) matching the semiconductor's band gap illuminates in the region of the junction. In operation, a reverse external bias is applied to enhance the responsibility by increasing the width of the depletion junction and decreasing junction capacitance. The measured output current is linearly proportional to the input optical power. This type of directly biased photodiode is attractive for its fast response with little distortion. It is a challenge to produce high bandwidth photodetector with an amplifier that often distorts the true transit profile of a fast optical signal. Consequently, a biased photodetector without an amplifier is the choice for high-speed measurement. The bandwidth is inversely proportional to the active detector area. The bias voltage also generates a leakage current, called dark current, which increases with temperature. Dark current approximately doubles every 10 °C increase in temperature. Applying a higher bias will decrease the junction capacitance but will also increase the dark current.

Figure 1 illustrates the bias circuity inside the detector.

1GHz, 400-1000nm, powered by battery or DC supply

DATASHEET

Application Notes

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters (<5 µm) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650nm. We produce a special version to increase the how handling by expanding the core side at the fiber ends.